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Laminar mixed convection in two-dimensional
far wakes above heated/cooled bodies:
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A heated or cooled body is positioned in a vertically rising forced flow. This develops
both a kinematic and a thermal wake, the latter adding buoyant effects to the
otherwise forced flow field. An asymptotic model is developed to treat this mixed
convection in both plane and axisymmetric geometry. The model holds for laminar
flow in the boundary layer approximation and uses a far-wake expansion for weak
buoyant forces. For plane geometry the model is validated against both experiments
in water and FEM simulations.

It is found for a heated wake that buoyant forces accelerate the fluid in the thermal
wake such that the vertical velocity deficit in the kinematic wake is reduced. For strong
heating this may even lead to vertical velocities larger than the forced flow amplitude.
In conjunction the entrainment is intensified in a heated wake. The effects in a cooled
wake are opposite in that the vertical velocity deficit is increased within the thermal
wake and the horizontal flow into the wake is weakened. In a strongly cooled wake
the horizontal flow may even invert, going from the wake centre into the ambient.
The Prandtl number controls the width of the thermal wake and, thus, the portion
of the kinematic wake which is affected by buoyant forces. Large Prandtl numbers
superimpose a narrow buoyant plume, small Prandtl numbers a wide buoyant plume,
onto the kinematic wake.

1. Introduction
Problems involving the combined effects of forced and natural heat convection

have received little attention. This seems to be the case because in most practical
applications either the forced convection or the natural convection dominates and
the secondary effects can be neglected in a first approximation. In many important
applications, however, both convective modes play an equally important role and,
thus, have to be considered simultaneously. This article relates to such a problem.

We consider specifically a vertically rising forced flow, which passes in cross-flow
a cylindrical (or spherical) body and develops a wake downstream. The body is at
high temperature, such that the transferred heat leads to buoyant forces in the wake.
This situation is of relevance for a number of engineering applications, e.g. hot-wire
anemometry or heat exchangers. The flow is assumed to be laminar, which is true only
in a limited range of parameters. Therefore, the practical relevance may be limited,
as in many applications wake flows become turbulent due to inflection-type velocity
profiles. The method of treating this mixed-convection problem, however, should apply
likewise to turbulent flows in conjunction with simple (analytical) turbulence models.
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We may roughly understand this mixed-convection problem as a superposition
of a wake flow and a buoyant plume. The first ingredient, thus, is the wake flow.
We shall focus on far laminar wakes. The theoretical treatment of far wakes starts
with the work of Tollmien (1931). Based on boundary-layer theory he develops a
first-order approximation to the asymptotic form of a plane far wake behind a
slender body, valid for large distances downstream. Goldstein (1933) proceeds to
a second-order approximation to the asymptotic form and, moreover, attempts to
derive a third-order approximation but rejects it owing to its singular behaviour. It
is Stewartson (1957), finally, who explains the origin of the difficulty at the third
stage of approximation and who resolves the problem by adding an appropriate
term. A detailed review and discussion of the stages of approximation is given by
Berger (1971). In summary, for the plane far wake an asymptotic solution is available,
refined to a third-order expansion. This solution in all stages of approximation gives
self-similar velocity profiles far downstream of the body. For the axisymmetric far
wake equivalent methods have been applied e.g. by Berger (1968) and an analogous
asymptotic solution has been obtained. Again, Berger (1971) reviews the progress and
the solution of the axisymmetric problem in full detail.

The second ingredient of this mixed-convection problem is the buoyant plume.
Once more, we concentrate on the laminar flow and temperature field above a line
(point) heat source. Plumes generated by free convection are the subject of numerous
investigations. Zeldovich (1937) is to our knowledge the first author to theoretically
recognize the self-similar form of flow and temperature fields in buoyant plumes.
Schuh (1948) in turn presents a complete analysis based on boundary-layer theory.
He derives the coupled set of differential equations and boundary conditions for
the problem. Yih (1952) infers closed-form solutions to this set of equations for the
specific Prandtl numbers Pr = 2

3
, 7

3
. A more complete theoretical treatment of plane

laminar plumes is conducted by Fujii (1963). He derives a closed-form solution for
Pr = 2 and, moreover, uses numerical integration to solve the two-point boundary
value problem for Pr = 0.01, 0.7, 10. In addition to a further exact solution for
Pr = 5

9
by Brand & Lahey (1967), Gebhart, Pera & Schorr (1970) give a systematic

review of the theoretical approaches and provide further solutions in the complete
range 0.01 6 Pr 6 100, obtained by numerical integration. A recent numerical,
fully nonlinear treatment of the plane laminar problem is conducted by Liñán &
Kurdyumov (1998). Further, asymptotic methods are used to develop solutions for
the limiting cases of small and large Prandtl numbers by e.g. Spalding & Cruddace
(1961) or Kuiken & Rotem (1971). The above list of theoretical studies is nowhere
near complete, but an extensive review can be found in the book of Gebhart et
al. (1988). There are corresponding experimental investigations of the problem in
literature. The work of Rouse, Yih & Humphreys (1952) e.g. relates to a plane plume,
rising above a line of small gas flames. Further examples are the experiments of
Brodowicz & Kierkus (1966) or Forstrom & Sparrow (1967), where precise flow and
temperature fields are measured above heated wires in air. Again, a complete review
of the experimental investigations can be found in Gebhart et al. (1988).

To summarize, the problem of a plane, laminar plume above a line heat source can
be treated within the framework of boundary-layer theory and self-similar solutions
are obtained. The theoretical and experimental treatment of axisymmetric, laminar
plumes has been developed to an equivalent stage, as discussed theoretically e.g.
by Schuh (1948), Yih (1951), Fujii (1963), Brand & Lahey (1967), Crane (1975),
experimentally e.g. by Rouse et al. (1952) and reviewed by Gebhart et al. (1988).

The combined occurrence of both phenomena, namely forced and natural convec-
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tion behind a heated cylindrical or spherical body, has also been studied in the past.
In a first class of theoretical investigations the body is idealized as a line or point
heat source, positioned in an otherwise undisturbed, parallel flow. Thus, the presence
of the body of finite size is ignored kinematically and only buoyant forces due to the
introduced heat are present. Based on boundary-layer theory Afzal (1981) develops
two expansions, valid for weak/strong buoyant forces in the near-/far-field of a line
heat source. The forced flow is upward or downward in the gravitational field, such
that buoyant forces are favourable or adverse with respect to the forced flow. The
corresponding axisymmetric problem of mixed convection behind a point heat source
is theoretically treated by Riley & Drake (1983), Afzal (1983) and Afzal (1985). All
authors invoke boundary-layer theory and infer solutions by means of asymptotic
methods. Riley & Drake (1983) develop two solutions for weak/strong buoyant forces,
uniformly valid downstream of the heat source in the entire region. Similarly, in the
study of Afzal (1983) two expansions for weak/strong buoyant forces in conjunction
with a spatial reversal are obtained. Finally, Afzal (1985) presents a new formulation,
capturing both the weakly and strongly buoyant regime in a single set of equations.
Wesseling (1975), in contrast to the above authors, avoids the boundary-layer ap-
proximation and uses instead the Oseen–Boussinesq equations as the basis for his
analysis. He develops asymptotic solutions for weak buoyant forces, which enable the
field variables in the near field of the (line) point heat source to be accessed.

The second class of theoretical investigations considers the finite size of the body
to some extent. Here, the deflection of the flow around the body, the no-slip condition
and some thermal condition on the body contour arise. Wood (1972) develops a
three-zone model for the plane mixed convection around a heated cylinder. He
considers (i) an inner, diffusive zone immediately around the cylinder, (ii) a wake
zone downstream of the cylinder and (iii) an outer zone with irrotational flow, and
works out the dominant physics and coupling of these zones. The corresponding
axisymmetric problem, i.e. mixed convection from a sphere, is treated by Hieber &
Gebhart (1969).

There are corresponding experimental investigations of mixed convection from
cylinders (wires) in the literature. Collis & Williams (1959) or Hatton, James & Swire
(1970) are two examples. A more complete review of the experimental work can be
found in Gebhart & Pera (1970). In summary, experiments cover a range of Prandtl
numbers 0.7 6 Pr 6 63 (air, silicone oils) and focus mostly on the integral heat
transfer from the cylinder. Measurements of field variables around the body and
downstream in the wake are not available to our knowledge.

The present article concentrates on the wake some distance downstream of a heated
cylindrical (spherical) body. This follows to some extent the idea of Wood (1972),
particularly with respect to the ‘wake zone’. Based on boundary-layer theory, we shall
develop an asymptotic model by means of a two-parameter expansion. The small
parameters are (i) an inverse power of the downstream coordinate and (ii) the ratio
of buoyancy and inertia forces. Thus, the model holds far downstream for weakly
buoyant conditions. For such a model the details of the flow and temperature fields
around the body are not relevant. Instead, an integral representation of the effects of
the body is sufficient. First, the loss of momentum in the flow is introduced via the
drag coefficient of the body. With respect to the pure wake, the model is of second
order, in accordance with the expansions of Goldstein (1933) and Berger (1968).
Secondly, an integral amount of heat is introduced at the position of the body. Here
the present model is in accord with Wood (1972) as far as the plane formulation is
concerned, but different in the presence of second-order, nonlinear terms, which allow
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Figure 1. Sketch of the problem given for both an isothermal body and a heated body.

a more accurate description of the wake. The present axisymmetric formulation is
given for the first time in literature.

The results from the asymptotic models are for both flow and temperature fields
elaborated for realistic values of the parameters. This goes beyond the intention of
Wood (1972). Detailed experiments in water, capturing all field variables downstream
of a cylinder are also carried out to verify the results from the asymptotic model.
Such experiments are to our knowledge not yet available in the literature. Numerical
(FEM) simulations of the full plane problem serve as a further means to elucidate
possible deficiencies of the approximations.

2. Formulation
2.1. Description of the problem

Let us consider a cylindrical or spherical body in a parallel flow of speed w∞ and
temperature T∞ as sketched in figure 1. The flow is upward against the gravitational
field. In addition, through a constant body temperature Tb > T∞, an integral heat
flux Q̇ (respectively a heat flux per unit length q̇ for the plane problem) can be added
to the flow. First, for Tb = T∞, due to the presence of the body alone the flow will be
deflected as it passes the body. For sufficiently small w∞ we shall have a steady and
laminar flow. The second effect of the body is due to the no-slip condition on the
body contour, resulting in an integral loss of momentum. Consequently a drag force
Fz (respectively a drag force per unit length fz for the plane problem) applies to the
body and reduced velocity amplitudes are present in the wake. Up to this point we
have no buoyant effects involved. If we heat the body to Tb > T∞, thirdly, we will
have hot fluid in the wake. Thus, buoyant forces will tend to accelerate the fluid in
the wake.
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2.2. Basic equations and scaling

If we consider a Newtonian fluid and invoke the Boussinesq approximation, the
steady velocity and temperature fields in the fluid are governed by the Navier–Stokes,
the continuity and the heat transport equations. Thus, we have

ρ∞(v · ∇)v = −∇p+ µ∇2v + αgρ∞(T − T∞)ez, (2.1)

∇ · v = 0, (2.2)

ρ∞cp(v · ∇)T = λ∇2T . (2.3)

Here ez = (0, 0, 1) is the unit vector in the z-direction and the velocity vector is given
by v = (u, v, w). The deviation from a hydrostatic pressure field is denoted by p and
T is the temperature of the fluid. The material properties of the fluid ρ∞, µ, cp, λ
denote density, viscosity, specific heat and heat conductivity, which are all taken to
be constant. The buoyant term has a linear dependence on temperature T around
the reference density ρ∞ (at T∞). Volume expansion α and gravitational acceleration
g are likewise constant.

The above conservation equations for momentum, mass and energy in the two-
dimensional problem are subject to the boundary conditions (where p in the equation
number refers to a plane geometry and a to an axisymmetric geometry)

x, z → ±∞ : u → 0, w → w∞, T → T∞, (2.4p)

x = 0, |z| > 1
2
d : u = 0,

∂w

∂x
= 0,

∂T

∂x
= 0, (2.5p)

x→ ±∞, z :
∂u

∂x
→ 0, w → w∞, T → T∞, (2.6p)√

x2 + z2 = 1
2
d : u = 0, w = 0, T = Tb; (2.7p)

r, z → ±∞ : u → 0, w → w∞, T → T∞, (2.4a)

r = 0, |z| > 1
2
d : u = 0,

∂w

∂r
= 0,

∂T

∂r
= 0, (2.5a)

r →∞, z :
∂u

∂r
→ 0, w → w∞, T → T∞, (2.6a)√

r2 + z2 = 1
2
d : u = 0, w = 0, T = Tb. (2.7a)

Thus, we assume an undisturbed parallel and isothermal flow both far upstream and
far downstream of the body. Symmetry with respect to both velocity and temperature
fields is assumed with respect to the z-axis. On the body contour (cylinder, sphere)
the no-slip condition and a constant temperature is applied. Sufficiently far from
the body the flow is undisturbed with respect to w∞ and T∞, allowing in general a
non-zero u in that region.

It is convenient at this stage to scale the problem in order to infer both dimensionless
equations and dimensionless groups. We use the scales

(X,Z) =
(x, z)

d
, (R,Z) =

(r, z)

d
, (2.8p, a)



170 P. Ehrhard

(U,W ) =
(u, w)

w∞
, (2.9)

P =
p

ρ∞w2∞
, (2.10)

Θ =
(T − T∞)

(Tb − T∞)
, (2.11)

and, therefrom, obtain the dimensionless set of conservation equations

(V · ∇)V = −∇P +
1

Re
∇2V +

Gr

Re2
Θ eZ , (2.12)

∇ · V = 0, (2.13)

(V · ∇)Θ =
1

PrRe
∇2Θ, (2.14)

and boundary conditions

X,Z → ±∞ : U → 0, W → 1, Θ → 0, (2.15p)

X = 0, |Z | > 1
2

: U = 0,
∂W

∂X
= 0,

∂Θ

∂X
= 0, (2.16p)

X → ±∞, Z :
∂U

∂X
→ 0, W → 1, Θ → 0, (2.17p)√

X2 + Z2 = 1
2

: U = 0, W = 0, Θ = 1. (2.18p)

R,Z → ±∞ : U → 0, W → 1, Θ → 0, (2.15a)

R = 0, |Z | > 1
2

: U = 0,
∂W

∂R
= 0,

∂Θ

∂R
= 0, (2.16a)

R →∞, Z :
∂U

∂R
→ 0, W → 1, Θ → 0, (2.17a)√

R2 + Z2 = 1
2

: U = 0, W = 0, Θ = 1. (2.18a)

The above scaling assumes the forced flow around the body to be dominant and,
thus, uses the diameter d of the body, the far-field velocity w∞ and the dynamic pres-
sure (ρ∞w2∞) to normalize length, velocity and pressure. The temperature scale is con-
structed using the applied temperature difference (Tb−T∞) such that 0 6 Θ 6 1 holds.
The dimensionless groups in the above conservation equations (2.12)–(2.14) are iden-
tified as Reynolds number, Grashof number and Prandtl number. The definitions are

Re =
w∞d
ν
, (2.19)

Gr =
αg(Tb − T∞)d3

ν2
, (2.20)

Pr =
ν

κ
. (2.21)

The Reynolds number characterizes the strength of the forced flow, the Grashof
number provides a measure of the strength of the buoyant effects and the Prandtl
number is a fluid property, characterizing the fluid with respect to the molecular
diffusion of momentum and heat.
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We can now characterize the plane flow around a cylinder for forced-flow conditions

based on the Reynold number. According to e.g. Žukauskas & Žiugžda (1985) we
find for Re < 1 a steady flow around the cylinder without separation. In the range
3 < Re < 5 a separation immediately behind the cylinder with two symmetric vortices
develops. For Re < 40 the flow remains steady and the size of the separation zone
downstream increases. For Re > 40 the flow develops time-dependence in form of the
so-called von-Kármán vortex street, featuring periodic vortex detachment. We can,
therefore, conclude that for forced flow conditions we shall observe a steady plane
wake behind the cylinder in the range Re < 40 and shall keep to this range in this
article.

The axisymmetric flow behind a sphere behaves similarly. Following e.g. Lugt (1979)
the flow remains attached for Re < 20. In the range 20 < Re < 400 a torus-shaped
steady recirculating vortex behind the sphere is present. For Re > 400 unsteady
behaviour develops. If we therefore restrict the analysis to Re < 400 we shall observe
a steady axisymmetric wake behind the sphere. In general, bodies of more streamlined
shape exhibit a wider range of Reynolds numbers in which a steady wake, plane or
axisymmetric, is observed. This is important to note, as the asymptotic model applies
in the far wake for bodies of arbitrary shape.

In principle, there are two possible reasons for a time-dependent wake. The first is
the flow described above in the near field around the body. The second might be an
instability of the velocity profile in the wake further downstream. Following Betchov
& Criminale (1967) inflection-type velocity profiles, as present in a heated wake, tend
to become unstable for Reip > 200. The Reynolds number Re ip is defined based on the
shear layer thickness (δ/2) and the velocity difference [w∞ − w(0, z)] in the wake, i.e.

Re ip =
[w∞ − w(0, z)]δ

2ν
. (2.22)

As we focus on steady wakes here, we always have to ensure that both conditions
ensure both a steady near-field flow around the body and a stable (and thus steady)
velocity profile in the wake further downstream. However, it remains uncertain to
what extent the buoyant acceleration of the fluid affects the stability of the inflection-
type velocity profile in the wake. Similarly, the buoyant forces may influence the flow
in the near field of the heated body and, hence, influence the steady/time-dependent
transition. As we shall concentrate on weakly heated bodies throughout most of this
article, we consider these effects to be of minor importance.

2.3. FEM simulation of the plane flow

In order to obtain a full solution to the plane problem, we solve the above dimen-
sionless equations (2.12)–(2.14) numerically, using the standard finite-element (FEM)
code FIDAP 7.6. Although the boundary conditions (2.15)–(2.18) are mathematically
formulated partly at infinite distances from the cylinder, we have to restrict the compu-
tational domain to a reasonable size, while the appropriate boundary conditions have
to be formulated on the boundaries of the computational domain. Numerous tests
have led us to chose the range of spatial coordinates for the numerical simulation as

0 6 X 6 30, (2.23p)

−50 6 Z 6 60. (2.24p)

Thus, for reasons of symmetry, we discretize one half of the flow field, and grid that
region using nine-node quadrilateral elements, which employ biquadratic interpolation
functions to approximate the velocity and temperature degrees of freedom within
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Figure 2. The FEM standard mesh employed.

each element. The standard mesh for the computations is shown in figure 2. From
the details of the mesh around the cylinder, shown enlarged in figure 2, it is clear
that we employ mostly rectangular elements and only depart from rectangles in the
immediate vicinity of the cylinder. Here, a transition region is constructed to integrate
the cylinder geometry into the rectangular computational domain. The aspect ratio
of the elements has been kept close to one in all high-gradient regions. Very few
elements, in particular in the outlet plane CB, have aspect ratios which depart from
one and it is at most 1 : 12. For standard computations we use about 6000 elements,
corresponding to about 25 000 nodes, whereas numerous tests with strongly refined
meshes and strongly increased computational domain have proven that all velocity
and temperature profiles in the wake (5 6 Z 6 50) experience very little relative
change. Thus, we are confident that our standard mesh in extent and refinement
guarantees a solution which is accurate to ±0.2%. Typical computations on an IBM
RS/6000-580 workstation with 256 MB RAM take around 2000 CPU seconds.

In addition, we have installed a procedure that allows integration of all variables of
the solution (and functions therefrom) along boundaries of the computational domain
and around the cylinder contour. This integration is based on a trapezoidal scheme
and allows e.g. the integral mass balance to be checked; it always remains accurate to
±0.1%. Moreover, this procedure allows, from the velocity and temperature on those
boundaries, the integral amount of heat q̇ (per unit length), which has been transferred
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into the flow to be inferred. In a similar fashion an integral balance of the momentum
flux is computed, which leads to a determination of the force (per unit length)
fz acting on the cylinder for the case of pure forced flow. Depending on whether
buoyant forces are present, the control volume is either the entire computational
domain (forced flow) or the cylinder contour (mixed convection). The determination
of q̇ and fz is essential as input for the asymptotic model (cf. § 2.4).

The boundary conditions which we apply to the computational domain have to
depart from the ideal ones formulated in equations (2.15)–(2.18) for several reasons.
We use

0 6 X 6 30, Z = −50, (AD) : U = 0, W = 1, Θ = 0, (2.25p)

0 6 X 6 30, Z = 60, (BC) :
∂U

∂Z
= 0,

∂W

∂Z
− Re

2
P = 0,

∂Θ

∂Z
= 0, (2.26p)

X = 0,−50 6 Z 6 − 1
2
, (AE) : U = 0,

∂W

∂X
= 0,

∂Θ

∂X
= 0, (2.27p)

X = 0, 1
2
6 Z 6 60, (FB) : U = 0,

∂W

∂X
= 0,

∂Θ

∂X
= 0, (2.28p)

X = 30,−50 6 Z 6 60, (CD) :
∂U

∂X
= 0,

∂W

∂X
= 0, Θ = 0, (2.29p)√

X2 + Z2 = 1
2
, (EF) : U = 0, W = 0, Θ = 1. (2.30p)

Thus, mainly on the outflow boundary BC and on the side boundary CD the
conditions are modified such that the decaying profiles of velocities and temperature
are disturbed as little as possible. The set given here proves to behave in that manner.

2.4. Asymptotic model for the far wake of weakly heated bodies

It is well known in the literature (cf. Schlichting 1982) that far laminar (and even
turbulent) wakes behind bodies, both plane and axisymmetric, are described well
using the boundary-layer approximation. Similarly, buoyant plumes, at a sufficiently
large distance above both line and point heat sources, allow theoretical modelling
based on boundary-layer theory. As both single effects in the problem develop a
boundary-layer type of flow sufficiently far downstream, it seems reasonable to expect
that the combined and aligned occurrence in a buoyant wake above a heated body
likewise results in a flow field which has a boundary-layer character.

Secondly the model assumes a dominant forced flow wake, only weakly disturbed
by buoyant forces. This assumption allows the flow and temperature fields to be
expressed in a much simpler fashion compared to the full problem given in equations
(2.12)–(2.18). It should be pointed out that the following asymptotic model holds for
bodies of arbitrary shape of plane or axisymmetric geometry. This is a consequence
of the far-wake expansion, where the near field around the body is not resolved.

Both the far wake and the buoyant plume, whether plane or axisymmetric, within a
boundary-layer approximation will lead to a power-law dependence on the streamwise
coordinate Z . As discussed e.g. by Berger (1971) for the far wake, the (singular) origin
Z = 0 of the power law is not identical to the centre of the body, nor to the trailing
edge. A similar statement should hold for the buoyant plume with respect to the
(singular) heat source. Taking the origin Z = 0 in the centre of the heated body is
thus an approximation in several respects, while the error due to this approximation
decays rapidly with increasing distance Z .
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2.4.1. Rescaling and boundary-layer approximation

If we focus on the boundary-layer type of flow sufficiently far downstream above
the body, it is reasonable to rescale the spatial coordinates such that the separate
scales within the boundary layer are reflected. The scaling (2.8)–(2.11), therefore, is
modified with respect to the horizontal coordinates and velocity. We apply

X̃ =
x

(d/
√

Re)
=
√

ReX, R̃ =
r

(d/
√

Re)
=
√

ReR, (2.31p, a)

Ũ =
u

(w∞/
√

Re)
=
√

ReU. (2.32)

This separates the spatial scales by introducing the small parameter ε1 = (1/
√

Re).
Further, we take advantage of the smallness of ε1, i.e. we restrict ourselves to the case√

Re � 1, (2.33)

and readily infer the leading order of an asymptotic expansion of the conservation
equations (2.12)–(2.14). Thus, we obtain the boundary-layer equations for the problem,
namely

Ũ
∂W

∂X̃
+W

∂W

∂Z
=
∂2W

∂X̃2
+

Gr

Re2
Θ + O

(
1

Re

)
, (2.34p)

∂Ũ

∂X̃
+
∂W

∂Z
= 0, (2.35p)

Ũ
∂Θ

∂X̃
+W

∂Θ

∂Z
=

1

Pr

∂2Θ

∂X̃2
+ O

(
1

PrRe

)
; (2.36p)

Ũ
∂W

∂R̃
+W

∂W

∂Z
=
∂2W

∂R̃2
+

1

R̃

∂W

∂R̃
+

Gr

Re2
Θ + O

(
1

Re

)
, (2.34a)

∂(R̃Ũ)

∂R̃
+
∂(R̃W )

∂Z
= 0, (2.35a)

Ũ
∂Θ

∂R̃
+W

∂Θ

∂Z
=

1

Pr

(
∂2Θ

∂R̃2
+

1

R̃

∂Θ

∂R̃

)
+ O

(
1

PrRe

)
. (2.36a)

As is clear from the accuracy of approximation within the heat transport equation
(2.36) given above, we restrict ourselves additionally to fluids with Prandtl numbers
that are not too small, i.e. we assume√

PrRe � 1. (2.37)

The boundary conditions within this approximation reduce to

X̃ = 0, Z > 0 : U = 0,
∂W

∂X̃
= 0,

∂Θ

∂X̃
= 0, (2.38p)

X̃ → ±∞, Z > 0 : W → 1, Θ → 0; (2.39p)

R̃ = 0, Z > 0 : U = 0,
∂W

∂R̃
= 0,

∂Θ

∂R̃
= 0, (2.38a)

R̃ →∞, Z > 0 : W → 1, Θ → 0. (2.39a)
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Since the asymptotic model is valid only far downstream of the body, the no-slip
and isothermal condition on the body contour cannot be enforced. Instead, we have
to specify integral conditions for both the flux of momentum and the flux of heat.
We chose a sufficiently large control volume around the body and balance mass,
momentum and heat across the boundaries of the control volume. The drag force
(respectively the drag force per unit length in the plane problem) is linked via

fz = cw
ρ∞w2∞

2
d, Fz = cw

ρ∞w2∞
2

πd2

4
, (2.40p, a)

to the dimensionless drag coefficient cw , the dynamic pressure and the cross-sectional
area (respectively cross-sectional area per unit length for the plane problem) of the
body. At the centre of the body we allow additionally for the input of an integral
heat flux Q̇ (respectively an integral heat flux per unit length q̇ for the plane problem)
into the flow. Within the framework of the boundary-layer approximation the integral
conditions for the flux of momentum and the flux of heat turn out to be

1
2
cw =

fz

ρ∞w2∞d
=

1√
Re

[∫ ∞
−∞
W (1−W ) dX̃ +

Gr

Re2

∫ Z

−∞

∫ ∞
−∞
Θ dX̃ dZ + O

(
1

Re

)]
,

(2.41p)

Ω =
q̇

ρ∞cp(Tb − T∞)ν
=
√

Re

[∫ ∞
−∞
WΘdX̃ + O

(
1

PrRe

)]
; (2.42p)

1
16
cw =

Fz

ρ∞w2∞2πd2

=
1

Re

[∫ ∞
0

R̃W (1−W ) dR̃ +
Gr

Re2

∫ Z

−∞

∫ ∞
0

R̃ΘdR̃ dZ + O

(
1

Re

)]
, (2.41a)

Ω =
Q̇

ρ∞cpd(Tb − T∞)ν
= 2π

∫ ∞
0

R̃WΘdR̃ + O

(
1

PrRe

)
. (2.42a)

The dimensionless group Ω quantifies the integral amount of heat transferred to the
body. It is linked to the a Nusselt number, as shown in § 3.2.

2.4.2. Asymptotic expansion for the far wake

As we consider the development of the wake as the dominant physics in the
problem, it is appropriate to invoke the approximations for the description of far
wakes, as e.g. given by Schlichting (1982). This is, as we shall see, another asymptotic
expansion in terms of the small parameter

ε2 = 1/
√
Z, ε2 = 1/Z. (2.43p, a)

Formally, we apply the expansions

Ũ = ε2U1 + ε2
2U2 + · · · , (2.44)

W = 1− ε2W1 − ε2
2W2 + · · · , (2.45)

Θ = ε2Θ1 + ε2
2Θ2 + · · · , (2.46)

which are strictly valid in the limit ε2 → 0. At this stage we have to decide on the
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magnitude of the buoyant term in the momentum equations (2.34). As mentioned
above, we shall consider only weak buoyant effects. Thus, we chose the Grashof
number such that

Gr

Re2
= O(ε2) (2.47)

holds. This restricts the validity of the model with respect to large Gr . On the other
hand it allows the buoyant term to be shifted into the second order of the expansion
and, thus, provides a means of developing a solution. We shall discuss the range
of validity of the model below in full detail. Using the expansions (2.44)–(2.46) and
the magnitude of Gr in (2.47), we are able to break up the problem into an infinite
number of simpler problems, and the two leading orders will be solved subsequently.
The equations of the first order are homogeneous and are found to be

1

ε2

∂(ε2W1)

∂Z
− ∂2W1

∂X̃2
= 0, (2.48p)

∂U1

∂X̃
− 1

ε2

∂(ε2W1)

∂Z
= 0, (2.49p)

1

ε2

∂(ε2Θ1)

∂Z
− 1

Pr

∂2Θ1

∂X̃2
= 0; (2.50p)

1

ε2

∂(ε2W1)

∂Z
−
(
∂2W1

∂R̃2
+

1

R̃

∂W1

∂R̃

)
= 0, (2.48a)

∂(R̃U1)

∂R̃
− R̃

ε2

∂(ε2W1)

∂Z
= 0, (2.49a)

1

ε2

∂(ε2Θ1)

∂Z
− 1

Pr

(
∂2Θ1

∂R̃2
+

1

R̃

∂Θ1

∂R̃

)
= 0, (2.50a)

with the corresponding boundary and integral conditions

X̃ = 0, Z > 0 : U1 = 0,
∂W1

∂X̃
= 0,

∂Θ1

∂X̃
= 0, (2.51p)

X̃ → ±∞, Z > 0 : W1 → 0, Θ1 → 0, (2.52p)∫ ∞
−∞
W1dX̃ =

cw

2

√
Re
√
Z, (2.53p)∫ ∞

−∞
Θ1dX̃ =

Ω
√
Z√

Re
; (2.54p)

R̃ = 0, Z > 0 : U1 = 0,
∂W1

∂R̃
= 0,

∂Θ1

∂R̃
= 0, (2.51a)

R̃ →∞, Z > 0 : W1 → 0, Θ1 → 0, (2.52a)∫ ∞
0

R̃W1dR̃ =
cw

16
Re Z, (2.53a)∫ ∞

0

R̃Θ1dR̃ =
Ω

2π
Z. (2.54a)
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This set of equations (2.48)–(2.54) can be solved analytically by introducing the
similarity variable

η =
X̃√
Z
, η =

R̃√
Z
. (2.55p, a)

Using η the solution is

U1 = − cw
√

Re

8
√
π
√
Z
η exp (− 1

4
η2), (2.56p)

W1 =
cw
√

Re

4
√
π

exp (− 1
4
η2), (2.57p)

Θ1 =
Ω
√

Pr

2
√
π
√

Re
exp (−Pr 1

4
η2); (2.58p)

U1 = − cwRe

64
√
Z
η exp (− 1

4
η2), (2.56a)

W1 =
cwRe

32
exp (− 1

4
η2), (2.57a)

Θ1 =
ΩPr

4π
exp (−Pr 1

4
η2). (2.58a)

With respect to the flow field, this solution is equivalent to the results for the
linearized far wake, given in the literature (e.g. Schlichting 1982; Loitsianski 1967).
The temperature field within this approximation reflects the passive transport of the
added heat due to diffusion and convection, based on the undisturbed, parallel flow.
Of course, no coupling (via buoyancy forces) of the temperature field to the flow field
is present.

At second order the equations become non-homogeneous and for the conservation
equations we obtain

1

ε2
2

∂(ε2
2W2)

∂Z
− ∂2W2

∂X̃2
= − c

2
wRe

32πZ
exp (− 1

2
η2)− ΩGr

√
Pr
√
Z

2
√
πRe5/2

exp (−Pr 1
4
η2), (2.59p)

∂U2

∂X̃
− 1

ε2
2

∂(ε2
2W2)

∂Z
= 0, (2.60p)

1

ε2
2

∂(ε2
2Θ2)

∂Z
− 1

Pr

∂2Θ2

∂X̃2
= −cwΩ

√
Pr

16πZ
exp (−(1 + Pr) 1

4
η2); (2.61p)

1

ε2
2

∂(ε2
2W2)

∂Z
−
(
∂2W2

∂R̃2
+

1

R̃

∂W2

∂R̃

)
= − c

2
wRe2

1024Z
exp (− 1

2
η2)− ΩGrPrZ

4πRe2
exp (−Pr 1

4
η2),

(2.59a)

∂(RU2)

∂R̃
− R̃

ε2
2

∂(ε2
2W2)

∂Z
= 0, (2.60a)

1

ε2
2

∂(ε2
2Θ2)

∂Z
− 1

Pr

(
∂2Θ2

∂R̃2
+

1

R̃

∂Θ2

∂R̃

)
= −cwΩPrRe

128πZ
exp (−(1 + Pr) 1

4
η2). (2.61a)
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The corresponding boundary and integral conditions are

X̃ = 0, Z > 0 : U2 = 0,
∂W2

∂X̃
= 0,

∂Θ2

∂X̃
= 0, (2.62p)

X̃ → ±∞, Z > 0 : W2 → 0, Θ2 → 0, (2.63p)∫ ∞
−∞
W2 dX̃ =

√
2c2

wRe
√
Z

16
√
π

− ΩGrZ2

Re5/2
− Gr∆mZ

Re2
, (2.64p)

∫ ∞
−∞
Θ2 dX̃ =

cwΩ
√
Z

4
√
π

√
Pr

1 + Pr
; (2.65p)

R̃ = 0, Z > 0 : U2 = 0,
∂W2

∂R̃
= 0,

∂Θ2

∂R̃
= 0, (2.62a)

R̃ →∞, Z > 0 : W2 → 0, Θ2 → 0, (2.63a)∫ ∞
0

R̃W2dR̃ =
c2
wRe2Z

1024
− ΩGrZ3

6πRe2
− Gr∆mZ2

Re2
, (2.64a)∫ ∞

0

R̃Θ2dR̃ =
cwΩReZ

64π

Pr

1 + Pr
. (2.65a)

∆m denotes the constant of integration, obtained by integrating the temperature field
in equation (2.41). Here the integral of the buoyant forces across the entire control
volume is required. Since the true temperature Θ(X̃, Z) is not known in the near field,
we replace the definite integral with respect to Z in equation (2.41) by an indefinite
integral.

With respect to the flow field the set of equations (2.59)–(2.65) introduces non-
linearities of the convective terms and includes weak buoyant forces, resulting from
the first-order temperature field. For the non-buoyant far wake flow, i.e. in the limit
Gr → 0, the above equations agree with the second-order expansion of Goldstein
(1933). The convective heat transport within this approximation is based on the first-
order wake velocity profiles and, hence, the buoyant contribution to the flow field
does not yet influence the heat transport.

We transform the set of equations (2.59)–(2.65) to a corresponding set of ordinary
differential equations by means of the similarity transformation

U2 =

√
2c2

wRe

16
√
π
√
Z
G(η) +

ΩGrZ

Re5/2
I(η) +

Gr∆m

4
√
πRe2

η exp (− 1
4
η2), (2.66p)

W2 =

√
2c2

wRe

16
√
π
F(η) +

ΩGrZ3/2

Re5/2
K(η)− Gr∆m

√
Z

2
√
πRe2

exp (− 1
4
η2), (2.67p)

Θ2 =
cwΩ

4
√
π

√
Pr

1 + Pr
H(η); (2.68p)

U2 =
c2
wRe2

1024
√
Z
G(η) +

ΩGrZ3/2

6πRe2
I(η) +

Gr∆m
√
Z

4Re2
η exp (− 1

4
η2), (2.66a)

W2 =
c2
wRe2

1024
F(η) +

ΩGrZ2

6πRe2
K(η)− Gr∆mZ

2Re2
exp (− 1

4
η2), (2.67a)
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Θ2 =
cwΩRe

64π

Pr

1 + Pr
H(η). (2.68a)

This generalized transformation leads to a set of ordinary differential equations for
the shape functions G(η), I(η), F(η), K(η), H(η), which is readily inferred to be

F ′′ + 1
2
ηF ′ + F =

1√
8π

exp (− 1
2
η2), (2.69p)

K ′′ + 1
2
ηK ′ − 1

2
K =

√
Pr

2
√
π

exp (−Pr 1
4
η2), (2.70p)

G′ + 1
2
ηF ′ + F = 0, (2.71p)

I ′ + 1
2
ηK ′ − 1

2
K = 0, (2.72p)

H ′′ + Pr 1
2
ηH ′ + PrH =

Pr
√

1 + Pr

4
√
π

exp (−(1 + Pr) 1
4
η2); (2.73p)

F ′′ + ( 1
2
η + (1/η))F ′ + 2F = exp (− 1

2
η2), (2.69a)

K ′′ + ( 1
2
η + (1/η))K ′ = exp (−Pr 1

4
η2), (2.70a)

G′ + (1/η)G+ 1
2
ηF ′ + 2F = 0, (2.71a)

I ′ + (1/η)I + 1
2
ηK ′ = 0, (2.72a)

H ′′ + (Pr 1
2
η + (1/η))H ′ + 2PrH = 1

2
Pr (1 + Pr) exp (−(1 + Pr) 1

4
η2). (2.73a)

The corresponding boundary and integral conditions are

η = 0 : I = 0, G = 0, F ′ = 0, K ′ = 0, H ′ = 0, (2.74)

η → ±∞ : F → 0, K → 0, H → 0, (2.75)

∫ ∞
−∞
F dη = 1, (2.76p)∫ ∞

−∞
K dη = −1, (2.77p)∫ ∞

−∞
H dη = 1; (2.78p)

∫ ∞
0

ηF dη = 1, (2.76a)∫ ∞
0

ηK dη = −1, (2.77a)∫ ∞
0

ηH dη = 1. (2.78a)

We apply a multiple shooting method, based on a fourth-order Runge–Kutta
scheme for the integration of the associated initial value problem, to solve the above
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set of ordinary differential equations, and boundary and integral conditions (2.69)–
(2.78). Given a solution to the shape functions, we can summarize the results for the
flow and temperature fields as follows:

Ũ = − c̄w
√

Re

8
√
πZ

η exp (− 1
4
η2) +

√
2c̄2

wRe

16
√
πZ3/2

G(η) +
ΩGr

Re5/2
I(η) + · · · , (2.79p)

W = 1− c̄w
√

Re

4
√
π
√
Z

exp (− 1
4
η2)−

√
2c̄2

wRe

16
√
πZ

F(η)− ΩGr
√
Z

Re5/2
K(η) + · · · , (2.80p)

Θ =
Ω
√

Pr

2
√
π
√

Re
√
Z

exp (−Pr 1
4
η2) +

c̄wΩ

4
√
πZ

√
Pr

(1 + Pr)
H(η) + · · · , (2.81p)

Ũ = − c̄wRe

64Z3/2
η exp (− 1

4
η2) +

c̄2
wRe2

1024Z5/2
G(η) +

ΩGr

6πRe2
√
Z
I(η) + · · · , (2.79a)

W = 1− c̄wRe

32Z
exp (− 1

4
η2)− c̄2

wRe2

1024Z2
F(η)− ΩGr

6πRe2
K(η) + · · · , (2.80a)

Θ =
ΩPr

4πZ
exp (−Pr 1

4
η2) +

c̄wΩRe

64πZ2

Pr

(1 + Pr)
H(η) + · · · . (2.81a)

Within equations (2.80) we have introduced an effective drag coefficient c̄w , defined
by

c̄w = cw − 2Gr∆m

Re5/2
, c̄w = cw − 16Gr∆m

Re3
. (2.82p, a)

The effective drag coefficient c̄w includes both the forced flow drag coefficient cw of
the body and the constant of integration ∆m. For an isothermal flow, c̄w = cw can be
inferred from equations (2.82p, a).

2.4.3. Limitations of the model

At this stage it seems reasonable to summarize the assumptions and limitations
which restrict the range of validity of the above model. First, applying the boundary-
layer approximation within the transport equations of both momentum and heat
restricts the validity to large Reynolds numbers and fluids with not too small Prandtl
numbers. Thus we require √

Re � 1, (2.83)
√

PrRe � 1. (2.84)

Secondly, the far-wake approximation restricts us to large Z . To be precise, given
the actual Reynolds number, we infer from the approximative solution (2.80) that the
expansion holds if

√
Z � c̄w

√
Re

4
√
π
, Z � c̄wRe

32
, (2.85p, a)

is fulfilled. Thirdly, we have a limitation from the assumption of a weakly heated
body. The buoyant contributions in (2.80) remain small if

ΩGr � Re5/2

√
Z
, ΩGr � 6πRe2, (2.86p, a)

holds.
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Figure 3. Sketch of the test section and measuring technique (approximately to scale). Measuring
planes are given by dashed horizontal lines, temperature probes are shown in the front view, LDA
measurement volumes are given in the middle section by cross-hairs.

Conditions (2.83), (2.84) are immediately transparent. Conditions (2.85), (2.86) per
se are likewise physically clear as weak buoyant effects are considered. However, the
combined application of conditions (2.85p) and (2.86p) for the plane problem gives

c̄w
√

Re

4
√
π
� √Z � Re5/2

ΩGr
. (2.87p)

This is different from the axisymmetric problem, where Z is allowed in a range

c̄wRe

32
� Z �∞. (2.87a)

In particular condition (2.87p) is an unexpected result, which is caused by the
growth of the buoyant term downstream for the plane case (cf. equation (2.80p)).

3. Experimental method
We aim to assess experimental data for the laminar mixed-convective flow in the

wake of a heated body. We restrict our experiment to a heated cylinder and realize a
plane flow and temperature field in the wake above this cylinder. We therefore have
to establish a homogeneous laminar flow, rising in a vertical channel. This flow has
to be controlled carefully with respect to flow rate and temperature. Furthermore
we have to control the temperature of the cylinder. The measuring technique has to
monitor the flow and temperature fields in the wake above the cylinder to allow a
quantitative comparison of the experimental situation and the theoretical predictions.
Based on these constraints, we have designed the following experimental setup.

3.1. Setup and measuring technique

The test section is sketched in figure 3. Water enters the test channel at a well-
controlled temperature T∞ from below via two horizontal pipes, which are perforated
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to allow a horizontal outlet, homogeneously into the lowest chamber. Through a se-
quence of two honeycomb inserts (H1, H2) and two fine screens (S1, S2), in conjunction
with the contraction (cf. figure 3), the flow is made parallel, and fairly uniform velocity
profiles across most of the channels cross-section are obtained. The contraction serves
to reduce the build-up of wall boundary layers in the lower section. Leaving the upper
screen S2, the flow passes the cylinder of diameter d = 6 mm. The channel in that
region has parallel walls and a square cross-section of 30 × 30 cm. The water leaves
the channel after a length of about 50 cm via a free interface outflow. A constant
integral flow rate through the test channel and a constant entrance temperature of the
water is achieved by a controlled pump, complete insulation of the test channel and
all elements of the water circuit and two heat exchangers, which have an extremely
carefully controlled temperature at their secondary side. This keeps the velocity w∞
upstream of the cylinder constant to ±1% and the inlet temperature T∞ constant to
±0.05 ◦C. The cylinder is likewise kept at constant temperature Tb. This is achieved
by circulating water of constant temperature through a copper pipe of 6 mm outer
diameter, which gives a temperature constancy of about ±0.02 ◦C.

The measuring system consists of a number of thermocouples mounted on travers-
ing drives, which allow the measurement of temperature profiles Ti(x) at three
distances z1, z2, z3 above the cylinder. On a dimensionless scale, these planes are lo-
cated at Zi = 7.75, 12.75, 17.75. The temperature profiles Ti(x) are taken in the middle
of the channel, where an almost undisturbed plane flow is present. Moreover, the
homogenity of temperature T∞ in the plane of the upper screen S2 is monitored by
another three thermocouples at different positions. All temperature measurements are
taken as the difference to the inlet temperature T∞, which is taken within a copper
cube of 3 cm side length positioned within the lowest chamber. Additionally three
PT100 resistant thermometers monitor at higher accuracy the cylinder temperature
at two positions and also the inlet temperature T∞. Accuracy of the thermocouple
difference measurements is ±0.05 ◦C, while the PT100 probes are typically accurate
to ±0.01 ◦C.

The flow field is measured using two one-component laser Doppler anemometers
(LDA). The first LDA measuring volume is at a fixed point (X,Z) = (10,−5) upstream
of the cylinder. This position provides an accurate measurement of the forced flow
velocity w∞ hardly affected by the presence of the cylinder. The signals are extracted
from the forward scattered light. The second LDA has a relatively small optical head
connected via fibre optics to a stationary unit with laser, Bragg cell, photomultipliers,
etc. Its measuring volume is traversed along identical lines as the thermocouples by
means of another stepping motor drive. The orientation is such that profiles wi(x)
are measured at three distances z1, z2, z3 above the cylinder, while in this case the
backscattered light is picked up by the optical head. Likewise these velocity profiles
are taken in the middle of the channel to focus mainly on plane effects. The precision
of both LDA measuring systems, due to a sophisticated transient recorder-based
evaluation of the signals, should be in the range ±0.2 mm s−1, the positioning of
traversing drives (velocity and temperature probes) is highly accurate to ±0.01 mm.
Typically, profiles of temperature and velocity are taken in steps down to ∆x = 1 mm.

3.2. Scaling and preliminary measurements

In order to apply the asymptotic model to the experimental conditions we need to de-
termine several (integral) parameters, namely the dimensionless groups Re, cw, c̄w,Gr ,
Ω,Pr. Moreover, the quantities in the scaling relations (2.8)–(2.11) w∞, Tb, T∞ need to
be determined. The temperatures Tb and T∞ of the cylinder and of the fluid upstream
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Property Symbol Value Units

density ρ∞ 9.9705× 102 kg m−3

specific heat cp 4.1790× 103 Ws kg−1 K−1

thermal expansion α 2.5720× 10−4 K−1

heat conductivity λ 6.0720× 10−5 W m−1 K−1

viscosity ν 8.9300× 10−7 m2 s−1

Table 1. Properties of the test liquid (water) for T0 = 25 ◦C, p0 = 1 bar (from Weast 1980).
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Figure 4. Drag coefficient cw , effective drag coefficient c̄w and heat transfer coefficient Ω as
function of Gr .

are directly available from measurements. Thus, as T∞ is kept at 25 ◦C, all liquid
properties ρ∞, cp, α, λ, ν are known. These properties are summarized in table 1. The
velocity w∞ is directly measured by the stationary LDA system. As the cross-section
of the channel is finite, the no-slip condition leads to the development of kinematic
boundary layers at all four vertical walls downstream of the last screen insert S2.
For reasons of continuity, the presence of low-velocity regions at the walls causes
increased velocity amplitudes in the intermediate region between the wake and the
wall boundary layers. As the wall boundary layers increase in thickness downstream,
an acceleration of the flow in the intermediate region is the consequence. Thus, in the
measuring planes Zi = 7.75, 12.75, 17.75 we expect w∞,i > w∞ in the outer region. In
fact, we find due to these sidewall boundary layers an increase of w∞ by about 18%
along the channel. For scaling of the velocity profiles we therefore use the spatially
averaged plateau value w∞,i in the outer region of the respective plane Zi, which
typically occurs in a region |X| > 4. For the determination of the Reynolds number
Re (cf. (2.19)), in contrast, we use an averaged value from the planes Z = −5 and
Z = 17.75.

The drag coefficient cw of the cylinder for forced flow conditions depends purely
on the Reynolds number Re. Schlichting (1982) gives for the experimental Reynolds
number Re = 39.4 a value of cw = 1.8. It is alternatively possible to use our numerical
(FEM) results to determine cw . Depending on the method of determination (cf. § 2.3),
we find cw = 1.475, 1.499. All values are given in figure 4(a) for Gr = 0.

For mixed-convection conditions we use an integration of the stress field around
the cylinder contour to determine the force, and thus cw , acting on the heated cylinder
(Gr > 0). Using this method we find increasing values of cw for increasing Grashof
numbers Gr (cf. circles in figure 4a). An inspection of the flow field reveals that
this increase of drag is due to the disappearance of the recirculation zone behind
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the cylinder. Thus, for large Grashof numbers, the flow is attached to the complete
cylinder contour and a stronger interaction occurs.

As inferred in § 2.4.2, the asymptotic model is based on an effective drag coefficient
c̄w , defined by equation (2.82p). The constant of integration ∆m in equation (2.82p) is
constant with respect to the spatial coordinates X̃, Z, η. The values of c̄w employed
in the asymptotic model for different Grashof numbers are given in figure 4(a) as
triangles. These values are inferred from the corresponding FEM simulations. For
small Grashof numbers a linear decrease of c̄w with increasing Gr can be seen,
precisely as predicted by equation (2.82p). The departure from the linear behaviour
for large Gr is not surprising, as ∆m develops a dependence on Gr .

The Prandtl number Pr is available from the fluid properties given in table 1. For
the reference temperature T∞ = 25 ◦C we find Pr = 6.128. Within the asymptotic
model the heat input is included in the parameters Gr and Ω. The Grashof number
is readily computed from the fluid properties and the measured temperatures Tb, T∞.
The dimensionless heat transfer coefficient Ω is linked to the Nusselt number Nu and
quantifies the integral heat transfer. We use our numerical (FEM) results to determine
the transferred heat q̇ (cf. § 2.3) and, hence, Ω via equation (2.42p). The values of
Ω obtained for various Grashof numbers are plotted in figure 4(b) as squares. An
increase of Ω with increasing Gr is obvious. We check these heat transfer data by
using literature correlations for the forced flow and natural convective flow heat
transfer from a cylinder. Following Gnielinski (1975) and Churchill & Chu (1975) for
laminar flow the empirical correlations

Ωfc = 2NuPr−1 = 1.6644Re1/2Pr−2/3, (3.1)

Ωnc = 2NuPr−1 = 2Pr

[
0.6 +

0.387(PrGr)1/6(
1 + (0.559/Pr)9/16

)8/27

]2

, (3.2)

hold. For the specific Reynolds and Prandtl numbers in the experiment, Re =
39.4,Pr = 6.128, the correlations yield

Ωfc = 3.12, (3.3)

Ωnc = (0.43 + 0.279Gr1/6)2. (3.4)

The Nusselt number in equations (3.1), (3.2) is defined by

Nu =
π

2

hd

λ
, (3.5)

where h is the heat transfer coefficient. Both Ωfc and Ωnc are given in figure 4(b)
by solid and dashed lines. Our results from the FEM simulations for Ω (cf. squares
in figure 4b) compare reasonably well with the correlations (3.3), (3.4). First, the
value Ωfc is about 10% lower than the extrapolated value for Gr → 0 from our data.
Secondly, the increase of Ω with increasing Gr occurs perfectly parallel to the increase
of Ωnc in correlation (3.4). However, the curve Ωnc(Gr) is shifted to lower values. This
is due to the presence of the forced flow within the present heat transfer data in
figure 4b (squares). A summary of the experiments presented is given in table 2.

4. Results
In the following sections we shall give results obtained for the flow field in various

parameter regimes. As only plane experiments have been performed, we restrict the
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w∞ (Tb − T∞)
(m s−1) Re (◦C) Gr

5.864× 10−3 39.4 0.0 0.0
5.864× 10−3 39.4 0.15 102.5
5.864× 10−3 39.4 0.50 341.7
5.864× 10−3 39.4 1.50 1025.1

Table 2. Summary of experiments (T0 = T∞ = 25 ◦C).

discussion to the plane problem. We focus on the dimensionless vertical velocity pro-
files W (X,Zi) in three different planes downstream, above the cylinder. Temperature
profiles Θ(X,Zi) of reasonable quality have been measured only for the strongly
heated cylinder (§ 4.3) and they are discussed only in that section.

The isothermal problem (§ 4.1) is discussed to check the consistency of the results
from the experiments, the asymptotic model and the numerical (FEM) simulations.
Here, the particular aspects of the forced flow can be verified, such as the development
of the far (and near) wake. This part does not contain new results, as all features
of far wakes presented here are well known from the literature (e.g. Berger 1971).
Section 4.2 relates to the weakly heated cylinder and in particular verifies aspects of
weak buoyant forces within the asymptotic model. Here the parameters are chosen
such that the asymptotic model applies. Section 4.3, finally, relates to the strongly
heated cylinder and gives results for parameter ranges outside the validity of the
asymptotic model. Here, mixed convection with strong buoyant forces is present,
and only a comparison of experimental findings and numerical (FEM) simulations is
reasonable.

4.1. Isothermal wake

In figure 5 our results for the flow field are collated for an isothermal situation. We
give in figure 5(a) measured vertical velocity profiles W (X,Zi) in three planes Zi
above the cylinder. The data points are shown on both sides of the symmetry line
X = 0 in addition to least-square fits of the symmetric form

W = 1− C1 exp (C2X
2). (4.1)

We see in the plane Z = 7.75 (symbols ∇) a pronounced wake profile with a
substantial velocity deficit on the centreline X = 0. As we move downstream to
Z = 12.75, 17.75 (symbols �, e) the velocity deficit decreases. Moreover, the width of
the wake (in X) increases downstream. Employing equation (2.85p) we can estimate
the small parameter in the asymptotic representation to be

c̄w
√

Re

4
√
π
√
Zi

= 0.57, 0.45, 0.38, (4.2)

for the planes Zi = 7.75, 12.75, 17.75. Thus, particularly for Z1, the asymptotic
representation may be critical.

Figure 5(c) shows the corresponding profiles obtained by means of the numerical
(FEM) simulations. Here, the same features of the wake are observed, namely a
widening and a filling up of the wake profile with increasing Z . Quantitatively,
two characteristic differences arise in comparison with the experimental profiles in
figure 5(a). First, the numerical simulations give velocities W > 1 outside the wake. In
contrast, the experimental profiles give W 6 1 in the outer region. This discrepancy
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Figure 5. Profiles of the dimensionless vertical velocity W (X,Zi) downstream of an isothermal cylin-
der: (a) the experimental data and corresponding least-square fits, (b) results from the asymptotic
theory and (c) results from the numerical simulations. The distances above the cylinder are Zi = 7.75
(5, ———), 12.75 (�, −−−), 17.75 ( e, · · · · · ·), the parameters are Re = 39.4, cw = c̄w = 1.8.

arises from the different methods of scaling. In the numerical simulations we force
W = 1 at the inflow boundary and W∞ → 1 is obtained at the side boundary for large
X. The flow field outside the wake region thus has velocity amplitudes W > 1 for
reasons of continuity. In the experiments the velocity w∞ for x →∞ is not accessible,
since the channel has a finite width in both horizontal directions. Therefore, w∞ is
taken from the plateau of the measured profiles w(x, zi), which typically occurs in a
region |X| > 4. By scaling with the averaged plateau value, all experimental profiles
approach W∞ = 1 outside the wake region. This discrepancy, therefore, is an artifact
of the scaling methods.

Secondly, the velocity deficit in the centre of the wake (X = 0) from the numeri-
cal simulation is smaller by about 12% than the experimental findings. This is a
consequence of the non-perfect experimental conditions. While the numerical and
asymptotical results are obtained for a perfectly two-dimensional situation, the ex-
perimental results are affected to some degree by the presence of the walls. In the
experiment we have a slight acceleration of the forced flow in the outer region and
not a perfectly constant w∞. These experimental imperfections are outlined in § 3.2
in some detail. In fact, three-dimensional numerical simulations have shown that this
discrepancy with respect to the wake amplitude is caused by the acceleration of the
outer flow. While we have to be aware that the velocity amplitudes are not perfectly
in accord, a careful analysis of the width of the wakes from both experimental
measurements and numerical simulations shows excellent agreement.

The results for the vertical velocity profiles W (X,Zi) from the asymptotic model
are collated in figure 5(b). Following Schlichting (1982), we use a drag coefficient of
cw = 1.8 for the Reynolds number Re = 39.4. We have compared our asymptotic
results with the second-order expansion of Goldstein (1933), given likewise in Berger
(1971). The profiles of both velocity components are identical. Moreover, we find good
agreement between the asymptotic model and experimental data. The differences are
less than 2.5% with respect to the amplitude, and less than 8% with respect to the
width of the wake. The asymptotic theory does not take into account the displacement
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effect of the cylinder as a solution for large z is inferred. This gives profiles with
W 6 1 outside the wake region. The loss of momentum due to the presence of the
cylinder, on the other hand, is correctly reflected within the asymptotic model.

We find experimentally the power law

1−W (0, Z) ∝ Z−0.63 (4.3)

for the wake amplitude. The corresponding asymptotic and numerical dependences
are

1−W (0, Z) ∝ Z−0.596, (4.4)

1−W (0, Z) ∝ Z−0.608. (4.5)

In all cases the power laws give an excellent representation of the data in the
complete range 7.75 6 Z 6 17.75. The width of the wake δ in the following is based
on the criterion

1−W (δ, Z)

1−W (0, Z)
=

1

100
. (4.6)

Using least-square fits, we infer power-law dependences for δ(Z). The asymptotic
and numerical results are perfectly represented by

δ ∝ Z0.478, (4.7)

δ ∝ Z0.461. (4.8)

The experimental data, in contrast, do not allow a single power-law dependence for
the complete range in Z . The experimental data for Z > 10, though, follow closely the
theoretical dependences given above. This observation indicates that the experimental
wake is not self-similar in the near field, due to the finite diameter of the cylinder.

Generally, the excellent agreement between the experimental data and asymptotic
model is not surprising, as the asymptotic model is based on the drag coefficient
cw . The value of cw in the literature, of course, is inferred from careful experimental
measurements (cf. Schlichting 1982).

4.2. Weakly heated cylinder

In this section we give two typical results for flow fields featuring weak buoyant
forces. The first example is obtained for a Grashof number of Gr = 102.5. Employing
equation (2.86p), we obtain for Zi = 7.75, 12.75, 17.75,

ΩGr
√
Zi

Re5/2
= 0.10, 0.13, 0.15� 1. (4.9)

Thus, the asymptotic model is valid for all Zi.
The results for the profiles W (X,Zi) are collated in figure 6. Even though the profiles

look qualitatively similar to the forced flow profiles (cf. figure 5), an inspection of the
amplitudes in figure 6(a) reveals that buoyant forces have accelerated the flow in the
wake centre. Given identical Reynolds numbers (Re = 39.4), the measured profiles for
forced flow give values of W (0, 7.75) ' 0.24 on the centreline. For the weak buoyant
flow (Gr = 102.5) we find, in contrast, W (0, 7.75) ' 0.52. The velocity deficit in the
wake centre, thus, is considerably reduced.

In figure 6(a) the measured data from the corresponding experiments are plotted
as symbols and least-square fits of the symmetric form

W (X,Z) = 1− C1 exp (C2X
2) + C3 exp (C4X

2) (4.10)
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Figure 6. Profiles of the dimensionless vertical velocity W (X,Zi) and its buoyant contribution
WA(X,Zi) downstream of a weakly heated cylinder: (a) the experimental data and correspond-
ing least-square fits, (b) results from the asymptotic theory and (c) results from the numerical
simulations. The distances above the cylinder are Zi = 7.75, 12.75, 17.75, the parameters are
Re = 39.4, c̄w = 1.3,Gr = 102.5, Ω = 3.49,Pr = 6.13. Symbols as in figure 5.

are given as lines. The form (4.10) gives a reasonably accurate fit to all experimental
data and has been chosen based on the asymptotic results in equation (2.80p). In
figure 6(a), in addition to the measured profiles W (X,Zi), the contribution from the
buoyant forces

WA(X,Zi) = C3 exp (C4X
2) (4.11)

is plotted. This is obtained experimentally from the difference between the profiles
for Gr = 102.5 and the profiles for pure forced flow (Gr = 0). The experimental data
in figure 6(a) suggest, first, wake-type profiles W (X,Zi), whereas the velocity deficit
decreases downstream for increasing Z . Even though the data and fits indicate to
some degree that the width of the wake increases downstream, a reliable statement
on this question cannot be given due to the slightly scattered data. Secondly, the
extracted profiles WA(X,Zi) of the buoyant contribution have a narrow Gaussian
shape at the first plane Z1 = 7.75 (symbols 5), which develops downstream into a
broader shape with smaller amplitudes.

The results from the asymptotic model are given in figure 6(b). The overall profiles
W (X,Zi) agree in both amplitude and width with the measured profiles at all loca-
tions Zi (cf. figure 6a). We find differences of less than 1.7% in the amplitudes and less
than 6.2% in the width of the wake. From the asymptotic profiles a definite increase
of the wake width downstream can be inferred. Inspecting the buoyant contribution
WA(X,Zi), we see that the asymptotic results reasonably resemble the experimental
data from figure 6(a). Again a Gaussian profile, which decreases in amplitude and
develops a broader shape downstream, is obtained. Finally, the numerical simulation
results in figure 6(c) agree well with both the experimental and the asymptotic re-
sults as far as the overall profiles W (X,Zi) are concerned. The buoyant contribution
WA(X,Zi), in contrast, exhibits smaller amplitudes in all planes Zi. Moreover, the
amplitudes of the buoyant contribution remain almost identical in all three planes Zi.
Here some discrepancy remains in comparison with both experimental and asymp-
totic findings, which both give decreasing amplitudes of the buoyant contribution
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Figure 7. As figure 6 but for c̄w = 1.0, Gr = 341.7, Ω = 3.56.

downstream. This discrepancy is a direct consequence of the numerical forced-flow
results (cf. figure 5c). Here the velocity deficit in the wake has been underpredicted,
such that the difference between forced flow profiles and weak buoyant profiles gives
correspondingly poor results.

Figure 7 relates to a somewhat higher temperature of the cylinder. In this case we
have a Grashof number of Gr = 341.7 and can already infer from the velocity profiles
W (X,Zi) that buoyant forces have led to a characteristic change. From (2.86p) we
estimate the small parameter in the asymptotic model. We find in the three planes
Zi = 7.75, 12.75, 17.75

ΩGr
√
Zi

Re5/2
= 0.35, 0.45, 0.53. (4.12)

These numbers indicate that at least for large Zi we are at the limit of the asymptotic
model, as buoyant forces develop a substantial contribution to the flow field.

We continue to discuss the experimental findings, as collated in figure 7(a). All
measured velocity profiles W (X,Zi) indicate a pronounced buoyant acceleration of
the fluid in the wake centre. The experimental observations are in good agreement
with the corresponding asymptotic and numerical profiles W (X,Zi) (cf. figures 7b, 7c).
This indicates that the asymptotic model remains perfectly valid even for this large
Grashof number of Gr = 341.7. In addition to the velocity amplitudes, the total width
of the wake and the width of the inner buoyant zone are predicted correctly, both
by the asymptotic model and the numerical simulation. If we focus on the buoyant
contribution WA(X,Zi), we consistently find in all profiles a decrease of the amplitudes
and an increase of the width of the buoyant zone downstream. The amplitudes of
WA(X,Zi) from the numerical simulation again have some discrepancies with the
experimental amplitudes in figure 7(a). The reason for these discrepancies has already
been outlined above.

4.3. Strongly heated cylinder

In figure 8 we have collated velocity profiles obtained for a large Grashof number of
Gr = 1025.1. For such a high cylinder temperature the hot fluid in the wake develops
strong buoyant forces, comparable to inertial forces. This can be checked via relation



190 P. Ehrhard

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
–8 –4 0 4 8

X

W

(a) (b) (c)

0 4 8

X
0 4 8

X

WA

Figure 8. Profiles of the dimensionless vertical velocity W (X,Zi) and its buoyant contribution
WA(X,Zi) downstream of a strongly heated cylinder: (a) the experimental data and correspond-
ing least-square fits, (b) results from the asymptotic theory and (c) results from the numerical
simulations. The distances above the cylinder are Zi = 7.75, 12.75, 17.75, the parameters are
Re = 39.4, c̄w = 0.9,Gr = 1025.1, Ω = 3.89,Pr = 6.13. Symbols as in figure 5.

(2.86p), which gives in the three planes Zi = 7.75, 12.75, 17.75

ΩGr
√
Zi

Re5/2
= 1.14, 1.46, 1.72. (4.13)

Clearly, within this range of parameters the asymptotic model is not expected to be
valid. Therefore, only a comparison of experimental and numerical (FEM) data is
reasonable.

The experimental velocity profiles W (X,Zi) in figure 8(a) show a discernible wake
contribution only in the first plane Z1 = 7.75 (symbols 4). The profiles further down-
stream (Z2 = 12.75, Z3 = 17.75) are dominated by strong buoyant plumes in the
centre which have centreline velocities W (0, Z) > 1, exceeding the free-stream velocity
W∞ = 1. An inspection of the buoyant contribution WA(X,Zi) reveals, in accord with
the weakly heated cases, a narrow Gaussian profile with decreasing centre amplitude
and increasing width downstream. The asymptotic model (figure 8b) fails to predict
these profiles at a reasonable accuracy. First, the overall profiles W (X,Zi) exhibit
far too high amplitudes in the centre. Secondly, the buoyant contribution WA(X,Zi)
in figure 8(b) shows even increasing amplitudes downstream. This is qualitatively
in contradiction with the experimental findings in figure 8(a). The widening of the
Gaussian profile WA(X,Zi) from the experiment and asymptotic model, though,
happens to be in agreement. To summarize, the asymptotic model for large Gr ,
outside its range of validity, overpredicts the buoyant effects.

The results from the corresponding numerical simulation are collated in figure 8(c).
The overall velocity profiles W (X,Zi) show a reasonable agreement with the exper-
imental data in figure 8(a). The acceleration of the flow in the centre as one moves
downstream, though, is slightly overpredicted by the numerical simulation. The buoy-
ant contribution WA(X,Zi) reveals a Gaussian profile of constant centre amplitude
(in Z), which becomes broader downstream. Once more, there remains a discrepancy
with respect to the amplitude WA(0, Zi): the experiment indicates a distinct decrease
of the centre amplitude downstream.
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Figure 9. Profiles of the dimensionless temperature Θ(X,Zi) downstream of a strongly
heated cylinder: (a) the experimental data and corresponding least-square fits for Z1 ( e),
Z3 (4); (b) results from the asymptotic theory and (c) results from the numerical simu-
lations. The distances above the cylinder are Zi = 7.75, 12.75, 17.75, the parameters are
Re = 39.4, c̄w = 0.9,Gr = 1025.1, Ω = 3.89,Pr = 6.13. Line styles in (a, b, c) as in figure 5.

As mentioned above, temperature profiles Θ(X,Zi) have been measured in the
experiments at much lower accuracy. This is due, first, to a temperature increase
of always less than 0.2 K in the first measuring plane and even smaller tempera-
ture amplitudes in the measuring planes downstream. Secondly, for high cylinder
temperatures the situation is not perfectly stationary, leading to further errors from
time-averaging. Nevertheless, it is useful to compare temperature profiles for the
strongly heated cylinder at least. The data are collated in figure 9. The experimental
data are given in figure 9(a) for two planes, namely Z1 = 7.75, Z3 = 17.75, in form of
the symbols eand 4. Moreover, least-square fits of the form

Θ = C1 exp C2X
2 (4.14)

are given by the solid and dotted lines. The profiles are of Gaussian type, whereas
the temperature in the centre Θ(0, Zi) decreases downstream and the width of the
heated zone δth increases downstream. A qualitatively identical behaviour can be seen
in the numerical simulation profiles in figure 9(c). Quantitatively, however, the peak
temperatures Θ(0, Zi) from the numerical simulation are somewhat higher. Further-
more, the widening of the heated zone δth downstream appears more pronounced
in the experimental data. This discrepancy is presumably caused by slight temporal
oscillations downstream of the cylinder in the experiment. These oscillations appear to
be precursors of an instability leading to a time-dependent wake further downstream.
This causes a more effective transport of momentum and heat in the horizontal
direction X. Moreover, the time-averaging during the temperature measurements for
time-dependent wakes leads to a smearing of the profiles.

Finally, the temperature profiles from the asymptotic model in figure 9(b) dramati-
cally overestimate the peak temperature Θ(0, Zi). Moreover, the width development
is not in accord with the experimental data. This is not surprising, as equation (4.13)
proves that this model is outside of its range of validity.
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Figure 10. Profiles of (a) the dimensionless horizontal velocity Ũ(X,Z3), (b) the dimension-
less vertical velocity W (X,Z3), (c) the dimensionless temperature Θ(X,Z3) downstream of
a weakly heated body. The distance above the body is Z3 = 17.75, the parameters are
Re = 39.4, c̄w = 1.0,Gr = 341.7, Ω = 3.56.

4.4. Effect of Prandtl number

We now discuss the influence of the Prandtl number, or in physical terms of the
fluid properties, on the flow and temperature fields. In §§ 4.1–4.3 we have verified the
asymptotic model against both experimental and numerical (FEM) findings. Thus,
this discussion is purely based on the asymptotic model, within its range of validity
(cf. § 2.4.3). Moreover, we focus on the plane problem.

In figure 10 we collate a set of results, obtained for Prandtl numbers in the range
0.1 6 Pr 6 100. The results are obtained for mixed-convective conditions and a
weakly heated body, i.e. the parameters are Re = 39.4,Gr = 341.7. The profiles are
taken at a distance Z3 = 17.75 downstream of the body. From the temperature
profiles Θ(X,Z3) in figure 10(c) the influence of the Prandtl number can be inferred.
For a large Prandtl number of Pr = 100 we have a poorly conducting fluid, causing
a narrow heated zone of thickness δth ' 0.3. In contrast, a small Prandtl number of
Pr = 0.1, due to good conduction in the fluid, leads to a wide heated zone of thickness
δth ' 9. The thickness of the heated zone is defined by

Θ(δth, Zi)

Θ(0, Zi)
=

1

100
. (4.15)
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Similarly, the amplitude Θ(0, Z3) of the Gaussian-type profiles is strongly dependent
on the Prandtl number. Here we find an increase of the centre temperature Θ(0, Z3)
with increasing Prandtl number. A careful analysis of all data reveals that both the
width of the heated zone δth and the centre temperature Θ(0, Z) follow a power law
in the range investigated, 5 6 Z 6 20. For the complete range of Prandtl numbers
0.1 6 Pr 6 100 we find the behaviour

δth ∝ Pr−0.504, (4.16)

Θ(0, Z) ∝ Pr0.523. (4.17)

The power law behaviour (4.16), (4.17) of both quantities can similarly be found from
the leading-order term in equation (2.81p). The second-order term in equation (2.81p)
does not change this behaviour significantly.

Depending on the temperature field, the buoyant forces will either be concentrated
in the centre (cf. Pr = 100), or will be distributed over a wide range (cf. Pr = 0.1).
The vertical velocity profiles W (X,Z3) in figure 10(b) reflect this, as for Pr = 100 the
fluid is accelerated to velocities W (0, Z3) > 1 in a narrow centre zone. For Pr = 0.1,
in contrast, a wide range of fluid inside and outside the wake experiences buoyant
forces and, thus, only weak acceleration. For Pr = 1 we find the width of the heated
zone δth and the width of the wake δ, defined by equation (4.6), to be equal, i.e.
δ ' δth ' 3. The width of the kinematic wake δ remains independent of Prandtl
number. The behaviour of the centre amplitude W (0, Z) has likewise been analysed
with respect to a power-law behaviour. Here, only in the limited range 0.1 6 Pr 6 10,
can the data be approximated by the power law

W (0, Z) ∝ Pr0.032. (4.18)

For Pr > 10 the amplitudes W (0, Z) asymptotically approach a constant value for
Pr →∞ in all planes Zi. Physically this is expected, since even temperature profiles
in the form of a delta-function (for Pr →∞) due to viscous effects lead to buoyant
plumes of finite width and, hence, finite amplitude.

The horizontal velocity profiles Ũ(X,Z3) in figure 10(a) in all cases show transport
of fluid from the far-outside region into the wake. The maximum amplitude of
Ũ(X,Z3) occurs for Pr = 100 at a position X ' 1.5. The curve for Pr →∞, in
fact, cannot be distinguished from the curve obtained for Pr = 100. For smaller
Prandtl numbers the amplitude of Ũ(X,Z3) in the intermediate region decreases.
The amplitude of Ũ(X →∞, Z3) in the far-outside region, on the other hand, is not
dependent on Pr.

4.5. Effect of Grashof number

The Grashof number, or in physical terms the body temperature, is a further inter-
esting parameter. This discussion, once more, is for the plane problem, based on the
asymptotic model. Even though the above verification of the asymptotic model is
performed for a heated body (Gr > 0), we extend the discussion to a cooled body
(Gr < 0). In figure 11 a set of profiles, obtained for Grashof numbers in the range
−300 6 Gr 6 300 is collated, whereas all profiles are taken for a Reynolds number
Re = 39.4 and at a distance Z3 = 17.75 downstream of the body. Dimensionless pro-
files of the velocity components Ũ(X,Z3) and W (X,Z3) are plotted in figure 11(a, b)
and the sign-sensitive quantity GrΘ(X,Z3) is given in figure 11(c). The quantity GrΘ
is obtained via

GrΘ(X,Z) =
αgd3(T − T∞)

ν2
(4.19)

directly proportional to the actual temperature [T (X,Z)− T∞] of the fluid.
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Figure 11. Profiles of (a) the dimensionless horizontal velocity Ũ(X,Z3), (b) the dimensionless
vertical velocity W (X,Z3), (c) the dimensionless temperature GrΘ(X,Z3) downstream of a weakly
heated/weakly cooled body. The distance above the body is Z3 = 17.75, the parameters are
Re = 39.4 and Pr = 6.13. The other parameters are approximately Ω ' 3.5, c̄w ' 1.8− 0.003Gr .

From the temperature profiles in figure 11(c) we see the expected Gaussian profiles
across the wake, and we find from the dotted profiles increasingly hot fluid in
the wake centre for increasing Grashof numbers (cf. Gr = 150, 300). For Gr = 0
we recover the isothermal wake (solid profile). With decreasing Grashof numbers
(cf. Gr = −150,−300) the body is cooler than the ambient fluid and, thus, the
dashed temperature profiles show cold fluid in the wake centre. Independent of the
Grashof number, the heated/cooled zone is of thickness δth ' 1. The centre amplitude
GrΘ(0, Z3) is found to behave like

GrΘ(0, Z3) ∝ Gr0.967, (4.20)

which indicates that Θ(X,Z), following equation (2.81p), does not develop a de-
pendence on Gr . The form function H(η) in equation (2.81p) remains independent
of Gr .

The kinematic effect of the hot/cold fluid in the wake on the vertical velocity
W (X,Z3) can be inspected in figure 11(b). Here we find an acceleration of the hot
fluid in the wake centre from the dotted profiles (cf. Gr = 150, 300) compared to
the isothermal wake (Gr = 0). This effect has already been discussed in §§ 4.2 and
4.3. In contrast, cold fluid in the wake is retarded due to its higher specific weight.
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Figure 12. Profiles of the dimensionless vertical velocity W (X,Z1) downstream of the cylinder for
various temperatures Tb: (a) the experimental data and corresponding least-square fits, (b) results
from the asymptotic theory and (c) results from the numerical simulations. The distance above the
cylinder is Z1 = 7.75, the parameters are Re = 39.4,Pr = 6.13,Gr = 0, 102.5, 341.7, 1025.1.

This can be inferred from the dashed profiles obtained for the cooled body (cf.
Gr = −150,−300), which show an increasingly strong velocity deficit in the wake
centre. Thus, cold fluid has a similar effect to an increase of the drag coefficient, as
both lead to more pronounced wake profiles. The centre amplitude W (0, Z3) of the
vertical velocity almost exactly follows the proportionality

W (0, Z3) ∝ Gr1.0. (4.21)

As both form functions F(η), K(η) in equation (2.80p) are independent of Gr , this is
consistent with equation (2.80p).

The profiles of the horizontal velocity component Ũ(X,Z3) are given in figure 11(a).
For the isothermal body (cf. Gr = 0) the solid profile indicates a flow of ambient
fluid into the wake centre (Ũ < 0), which persists for X →∞. The heated body (cf.
Gr = 150, 300) clearly intensifies the inward flow, as the dotted profiles show larger
amplitudes for X →∞. This is a consequence of the vertical acceleration of the hot
fluid in the wake centre, which in turn demands a greater supply of fluid from the
ambient. If the body is cooled (cf. Gr = −150,−300) the situation develops quite
differently. Now, the vertical retardation of the cold fluid in the wake centre may
even lead to a horizontal flow outward into the ambient (U > 0), as can be inferred
from the dashed profiles. The amplitude Ũ(X →∞, Z3) of the horizontal velocity far
outside follows the law

Ũ(X →∞, Z3) ∝ Gr1.04. (4.22)

The last term in equation (2.79p) is responsible for the behaviour η →∞. Neither
form functions G(η), I(η) have a dependence on Gr and in all cases (2.79–2.81p) the
dependences on Gr are explicitly given.

The influence of the Grashof number Gr on the flow field can be verified by the
experimental measurements and by the numerical simulations of the vertical velocity
profiles W (X,Zi). A comparison of these profiles in the plane Z1 = 7.75 is given in
figure 12. We see a reasonably good agreement of the profiles obtained by all three
methods. The agreement holds for all Grashof numbers, whereas slight discrepancies
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occur for the case of the strongly heated cylinder with Gr = 1025.1. Here we stress
that the asymptotic model is outside its range of validity. A quantitative experimental
verification can be obtained from a comparison of the measured centre amplitudes
W (0, Z3) in the plane Z3 = 17.75 and the power law (4.21), found from the asymptotic
model. We exclude the data for Gr = 1025.1 and find from the experimental data the
least-square fit

W (0, Z3) ' 0.581 + 1.126× 10−2Gr1.0. (4.23)

Thus, the experimental data to excellent accuracy confirm the linear law in the range
of moderate Grashof numbers.

As shown in figures 8, 10 and 12, sufficiently large Grashof numbers lead to
centreline velocities W (0, Z) > 1. Examining equation (2.80p) with F(0), K(0) from
the integrated system (2.69–2.78p), we find for fixed Pr = 6.13

ΩGr > 0.35
c̄wRe3

Z

(
1 + 0.07

c̄w
√

Re√
Z

)
. (4.24)

Condition (4.24), consistent with all theoretical and experimental results, defines the
parameter range for which the centreline velocity exceeds the free-stream velocity.

5. Conclusion
We have studied the flow and temperature fields in wakes above heated bodies.

The problem is either plane for horizontal cylindrical bodies or axisymmetric for
spherical bodies. We consider the laminar flow of a Newtonian fluid, subject to
inertial forces, viscous forces and buoyant forces. Buoyant forces are modelled by
using the Boussinesq approximation. This mixed-convection problem is characterized
by three dimensionless groups, namely the Reynolds number, the Grashof number
and the Prandtl number.

We use three principle means of investigation. (a) An asymptotic model is developed,
which, based on boundary-layer theory, is valid for large Reynolds numbers and large
Péclet numbers. Further expansions focus on the far wake and on weak buoyant
forces. The model provides analytical expressions in self-similar form for the flow
and temperature fields, containing explicit parameter dependences, in conjunction
with a system of ordinary differential equations for the shape functions. To validate
the asymptotic model, experiments and FEM simulations in a plane geometry are
employed. (b) The experiments are performed in a vertical water channel (Pr ' 6),
where a horizontal isothermal cylinder is positioned. Profiles of vertical velocity and
temperature are measured at distances 7.75 6 z/d 6 17.75 above the cylinder by
means of laser Doppler anemometry and thermocouples. The parameter range in the
experiments is Re ' 40, 0 6 Gr 6 1025. (c) The FEM simulations use a commercial
code (FIDAP 7.6) to compute the flow and temperature fields on a mesh of about
25 000 nodes. The computational domain extends sufficiently outward horizontally
from the symmetry line, i.e. 0 6 x/d 6 30. Vertically it extends sufficiently far into
both upstream and downstream direction and covers the range −50 6 z/d 6 60.

In the heated wake above the cylinder we find buoyant forces, governed by the group
Gr/Re2, leading to an acceleration of the fluid, which tends to reduce the velocity
deficit in the wake centre. For strong heating this acceleration may even lead to vertical
velocity amplitudes larger than the forced flow amplitude. The amplitude of the
buoyant contribution to the vertical velocity profile increases with increasing Grashof
number. In conjunction with the vertical movement of fluid, horizontal transport of
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fluid from far outside into the wake centre is characteristic for the isothermal wake.
For the heated wake strong buoyant forces cause an intense horizontal transport of
fluid into the wake centre. The horizontal velocity far outside the wake increases
likewise with increasing Grashof number. For a cooled wake, instead, retardation of
the fluid in the wake centre occurs. This reduces the horizontal flow into the wake
centre and may even cause a horizontal flow outward.

The Prantdl number governs the width of the thermal wake, which in general is
different from the width of the kinematic wake. Small Prandtl numbers result in a
wide thermal wake causing buoyant forces across and beyond the kinematic wake.
Thus, as heat is distributed over a wide area, a wide buoyant plume with weak
acceleration is present. In contrast, large Prandtl numbers are responsible for narrow
thermal wakes, liberating buoyant forces in a narrow subregion of the kinematic
wake. Thus, a slender buoyant plume in the wake centre with strong acceleration
develops.

The asymptotic model has been carefully validated against both experiments and
FEM simulations for plane geometry. As the model has also been developed for
axisymmetric geometry, an experimental or numerical validation of this would be
worthwhile. Further, the laminar assumption is restricted to a limited parameter
range. An extension of the present model to turbulent flow would also be attractive.
In fact, the Reynolds-averaged conservation equations could serve as a basis for the
development of an analogous turbulent model. Using similar approximations, the
equations for the time-averaged velocities and temperature are almost identical with
the laminar set of equations. However, a turbulent shear stress and a turbulent heat
flux are present as opposed to the diffusive terms in the laminar set of equations.
Here, reasonable closure conditions would be required.
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